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Second-order horizontal steady forces and moment 
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In a recent work, a simple formula was derived for the ‘wave drift damping’ in a two- 
dimensional floating body and the obtained expression is exact within the context of 
the related theory, where only leading-order terms in the forward speed are retained. 
This formula is now generalized for a three-dimensional problem and the coefficients 
of the ‘wave drift damping matrix’ are given explicitly in terms of the standard second- 
order steady forces and moment in the horizontal plane; Munk’s yaw moment, related 
with the steady second-order potential and discussed in Grue & Palm (1993), is not 
analysed in this paper and the effect of an eventual small angular velocity around the 
vertical axis is also not considered. 

Numerical results agree in general with the proposed formula although in a specific 
case a consistent disagreement has been observed, as discussed in 95. 

1. Introduction 
A floating body drifts slowly under the action of the steady second-order wave force 

but this force is influenced by the small drift velocity caused by it. A possible way to 
express the interdependent behaviour is to write the excitation as a sum of the standard 
steady force with a force that depends linearly on the drift velocity, this latter parcel 
being called ‘wave drift damping’, after Wichers (1982). In a high sea state it provides 
a damping mechanism that is usually the dominating one and for this reason this topic 
has deserved some attention in the literature lately. 

The pertinent theory must be linear in the drift velocity U and can be obtained from 
the general ship motion theory, as described in Newman (1978), by disregarding terms 
of order U 2  or higher; the basic set of equations can be found in Nossen, Grue & Palm 
(1991) for a three-dimensional problem. 

A simple expression relating the drift force D,(w), influenced by the small forward 
speed U, with the standard drift force D,(w) has been obtained recently for a two- 
dimensional problem. In fact, if c = g / w  is the wave celerity and we the frequency of 
encounter, it can be shown that (see Aranha 1994) 

this formula being exact within the context of the related theory, where only terms of 
leading-order in U / c  are considered. 

In the reference system moving with the body, one observes a current U from right 
to left and since terms of order U2 must be ignored no new waves should be generated 
by the current and the body; it follows, in this case, that in the far field one should only 
observe the interaction between the current and the existing far field waves. The known 
theory on wave propagation in a moving media, discussed in Bretherton & Garret 
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(1969) and Whitham (1974), can be used then to determine the far field wave 
amplitudes and so the related steady forces. This is the basic idea behind (l), where one 
observes the standard result D,(w) being modified kinematically by the frequency of 
encounter we and dynamically by the factor 1 -4Ulc; the kinematics correction alone 
produces Wichers’s approximation D,(w) x D,(w,). 

This same sort of reasoning can be used to infer the three-dimensional formula, as 
briefly explained in this introduction and derived with more details in the rest of the 
paper. 

Consider then a floating body, moving with a forward speed U in the positive x- 
direction, exposed to an incident wave with amplitude A ,  frequency w and propagating 
in a direction that makes an angle P with the x-axis. Let Dz, u(w; p) be the steady force 
in surge, Dv, u(w; p) the steady force in sway and T,, J w ;  p) the steady yaw moment; the 
subscript ‘U’ refers always to the problem with forward speed. To simplify the 
notation one may introduce the ‘generalized’ steady force vector D,(w; p) by the 
expression : 

D,(w ; PI = [D,, u i + Du, u j  + T,, u kl. 

D,(w;P) = [D, , , i+D, , , j+ T,,,kI, 

(2 4 

(2 b) 

In an analogous way one can write 

that defines the steady generalized force in the standard problem, where the forward 
speed is zero; the subscript ‘0’ refers always to this problem. 

In the reference system moving with the body one observes a current U in the 
negative x-direction and a frequency we given by the known expression 

we = 1--cosp w ;  c = g/w. [ Y  I (3 4 

Besides this frequency change the incident wave, originally propagating in the p- 
direction, is also refracted by the current. In fact, the velocity component Usinp, 
perpendicular to the wave direction, changes the angle of the group velocity vector by 
an amount (2U/c)sinp, if only leading-order terms in U / c  are retained. As a 
consequence the actual direction of the incident wave, after refraction, is given by p1 
with 

U P1 = /3+2--sinp. C 

If only kinematics corrections were introduced one would obtain, in place of 
Wichers’ approximation Do(w,), the expression Do(@, ; p,) ; the dynamic correction, 
however, implies that this force should be multiplied by the factor 1 -4(UcosP/c), 
accordingly to (1) and to the fact that the parcel of the current actually against the 
incident wave is Ucosp. In this way one should have 

The purpose of the present paper is to show that formula (4) is exact within the 
context of the related theory, where terms of order U2 are ignored. Notice that (4) is 
correct either for a body fixed or free to oscillate, if the corresponding D,(w,;p,) is 
used; as shown in Aranha (1994), and corroborated in the present work, all 
information needed about the oscillatory motion is carried with the standard 
generalized force Do(w,; P1). 
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As pointed out by Grue & Palm (1993), one should add to (4) a moment N = Nk, 
related to the coupling between the steady second-order wave potential and the body 
forward speed Ui. This moment has a strong formal analogy with the classical Munk’s 
moment and its analysis is omitted in this work. 

In $2 the mathematical problem is posed and some basic relations, of conservation 
of energy and momentum, are stated. In $3, formula (4) is derived and in the following 
section the wave damping matrix is presented. Numerical results are discussed in $5 
and in the Appendix more specific results are elaborated. 

2. Mathematical problem and basic results 
Let x = x i+y j+zk  be the position vector and (r ,0 ,z)  the polar coordinates. 

Consider a floating body moving in the horizontal plane (x, y )  with the speed Ui and 
exposed to an incident wave with amplitude A ,  frequency w and being propagated in 
a direction that makes an angle p with the x-axis. In the reference system moving with 
the small forward speed Ui one observes the frequency of encounter we, defined in (3 a), 
and the following wavenumbers are introduced here for future reference: 

From (3a)  it follows, in particular, that 

if terms of order U 2  are neglected, and so the incident wave potential can be written 
in the form 

As usual, the time factor will be omitted in the sequel except in a few occasions where 
it may clarify the expression. 

Consider first the interaction between the incident flow - Ui and the body B and let 
Uv,(x) be the related potential. Once terms of order U 2  must be neglected this 
potential satisfies the ‘impermeable’ condition &pS/az = 0 at the free surface and 
corresponds to the distortion caused on the incoming flow by the ‘double body’ 
immersed in an unbounded fluid. Introducing the operator 

denoting by aB the intersection between the body and the free surface, by n the normal 
to B pointing out the fluid and n1 the normal to aB, the potential vs also satisfies: 

1 V,v,.n, laB = 07 
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Let &(x) exp (- iw, t )  be the perturbation caused on Ucp,(x) by the action of the 
wave; the subscript U indicates, as before, a variable related to the oscillatory problem 
when U + 0. The total potential can be written in the form 

@(x,t) = Uv,(x>+~.(x)ex~(-io,t), (9 4 

PAX) = P[iwe$u-~v,*v$J,l* (9 b) 

and from Bernoulli's equation the oscillatory pressure, linear in &, is given by 

If one designates, for notational convenience, el = i; e2 = j ;  e, = k, the following 
coefficients can be introduced (see Newman 1978): 

( j  = 1,2,3) (10) I ni = n-e , ;  m, = -[(n.V)Vy,].e,, 
nj+3 = (x x n) -e i ;  = -[(n.V)(x x Vq,)]-e,. 

It can be shown, to leading order in U / c ,  that the potential &(x) must be the 
solution of the set of equations (see Nossen et al. 1991) 

1 V2& = O  in V, 

where {q,, .(/3);j = 1,2 , .  . . ,6) are the generalized displacements. If Au(8;  /3) is the non- 
dimensional amplitude coefficient of the total outgoing wave, the boundary conditions 
when z --f - co and r --f m are given by 

Notice that all variables are functions of the frequency w and the incidence angle p ,  
although the dependence with respect to w will be omitted, whenever possible, to 
simplify the notation. 

The oscillatory force coefficients can be defined by 

withp. given by (9b). The expression on the right-hand side of (12) is a classical result 
due to Ogilvie & Tuck (1969) and 4, .(p) includes both the exciting and reacting 
hydrodynamic forces, the last ones normally expressed in terms of the added mass and 
radiation damping matrices. 

When the generalized forces {4, "(p); j = 1,2, . . . ,6) are known, the generalized 
displacements {qi, u(b);j = 1,2,. . . ,6) can be determined from the equations of motion 

with M,, and C,, being, respectively, the inertia and restoring matrices of the body; 
notice that the matrix Djl is symmetric. 
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The energy equation has been deduced by Nossen et al. (1991) and can be written, 
in the present notation, in the form (see (3b)) 

IAU(8;/3)I2d0+2 ReA,@,;p) = 0. (14) 

From conservation of linear and angular momentum one obtains expressions for the 
steady second-order drift forces and yaw moment in terms of the far-field amplitude 
coefficient A J 0 ;  p). The final result is given below and in the Appendix it is shown that 
it agrees with the one derived by Grue & Palm (1993); recall that Munk's moment N,  
related to the interaction between the steady second-order potential and the incoming 
flow, is not included in this analysis: 

cos,5,ReAU@,;,8) 

1 U 
q 4 ,  v(w; p> = -- pgA2 {A Jr [ 1 - 2 (cos ,5+ cos 0) sin 81AU(8; p)12 d0 

2Ke 71: 

In the above expressions, and in the following, the symbols Re (.) and Im (.) refer 
to the real and imaginary part of the related variable while * stands for the complex 
conjugate. 

Suppose, in the standard problem (zero forward speed), a wave incident in the 
direction p1 with frequency we and let Ao(8; ,5,) be the related outgoing wave amplitude 
coefficient. If U is taken equal to zero in (14) and Ao(B;p1)  is used in place of 
Au(8;p) ,  the standard energy relation (optical theorem) is obtained in this case 
(see Mei 1983); when a similar procedure is followed in (15) the known expressions 
for D,,o(we;pl) ,  Du,o(q,;/31) and q,o(we;pl) are recovered. If now one can find a 
relation between AU(O;p)  and Ao(O;Pl) then one could hope to express Du(w;p) in 
terms of D,(w,;p,), as stated in (4); this point will be addressed next. 

3. Relation between A,(8; /3) and Ao(8; PI) 
In this section a relation between AU(O; p) and Ao(O; pl) will be derived in such a way 

that it allows one to obtain formula (4). First a more physical argument, based on the 
theory of wave-current interaction, will be worked out; later on, this same problem 
will be considered in a more formal way. 

3.1. Wave-current interaction 
As said in the introduction, when terms of order U 2  are ignored no new waves are 
generated by the body and current and, in the far field, one may consider the 
interaction of the existing waves with the current. To place this idea in a proper 
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perspective one may consider, initially, the far-field waves in the absence of the current, 
and then suppose that the current is 'turned on' and increases slowly from its initial 
zero value to its final value U. From the known kinematics and dynamic theory on the 
wave-current interaction one can predict then the relation between the final situation, 
where the amplitude coefficient is A,(O;p), and the initial one, when this coefficient is 
given by A,(O;P,). This plausible argument leads, as shown in Aranha (1994), to a 
result that can be proved in a strict mathematical sense and motivates its use here in 
the context of the three-dimensional problem. 

To start with one considers first the kinematics interaction between the current 
and the incident wave, originally propagating in the direction /3 with frequency we. 
Let e,@) = (cosp; sinp) be the direction of the incoming wave and e,@) = (-sinP; 
cosp) a direction perpendicular to it. Initially the group velocity is given by the 
vector cg, ,(p) = (g/2we) e,@); after the interaction with the current - Ui the group 
velocity takes the form cg, ,@) = cg, ,@) - Ui. If cg, , = g/2we one can write 

when terms of order ( U / C ) ~  are ignored. Introducing the definition 
cg, u@)/cg, 0 = [I- 2(U/C) cos PI e#) + 2(U/C) sin Pep@), 

C,,~(O) = cg,,[1-2--c0sO " 1  C , (164 

one has then c , , ~ @ )  = ~~ ,~ (p )e ,@, ) ,  with p1 given by (3b). This change of wave 
direction corresponds to the refraction of the wave by the current. 

One should next consider the dynamic interaction between the incident wave and the 
current. Initially the wave has an amplitude A ,  and group velocity cg , , ;  at the end it 
has the actual amplitude A (see (6)) and the group velocity c,,&3). Assuming that 
the intrinsic frequency, namely, the frequency measured with respect to the medium, 
is v in this last problem, conservation of the wave action implies in the equality 
(A:/%) c g , o  = ( A 2 / 4  Cg,  u@) or 

We 

Finally, one considers the interaction between the outgoing wave and current. In the 
far field this wave is locally plane and it has, initially, an amplitude proportional to 
A, A,(O; PI), since the incoming wave is in the direction p1 ; at the end it has an amplitude 
proportional to A AJO; p) and a group velocity cg, u(0). Conservation of wave action 
implies here in the equality cg,,(&/we) IA,(O; p1)I2 = cg,  u(0) (A2/g)  1Au(8; /?)I2 or, with 
the help of (16a) and (16b), 

JAu(O;p)12 = [ 1 -2c(cos/3-cosO) IA,(O;/ll)12. (174 I U 

Using this relation in the energy equation (14) and observing also the energy identity 
for the standard problem one obtains 

Re A u@, ; PI = Re A,@, ; p1>. (17b) 
From this last result it follows, to leading order in U/c ,  that AI,'@,;P) = 

A,@, ; pl) + i( U / c )  x, with x being a real constant; placing this expression into (17 a)  
and ignoring terms of order ( U / C ) ~  one obtains : 2( U/c)  x Im (A,@, ; pl)) = 0. Since 
Im(A,@,;~l)) is neither zero nor dependent on U/c ,  this last equality implies that 
x = O o r  
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If (17a) and (17b) are placed into (15a) and (15b) and the expressions that relate 
D,,o(we;pl) and Du,o(we;pl)  with A0(8;/3,) are recalled, the vector equality (4) is 
obtained in the i and j directions; the equality in k direction will be elaborated in the 
following. 

In fact, (17a) and (17c) suggest a little stronger relation between A,(B;p)  and 
A,,(o; pl>, namely 

A,(B;P) = 1--(cosp-cose) Ao(8;p,) .  (18a) [ :  1 
Expression (18a) implies that the phase of AO(8;Pl) is not changed by the current, 

only its magnitude is affected; this result is consistent with (17c) and it is further 
elaborated in the next item. 

Taking now the derivative of (18a) with respect to 8 one obtains 

and placing (1 8 a) and (1 8 b) into (1 5 c) the equality (4) in the k direction can be derived ; 
one should just observe that Im[sinOIAo(8;~,)12] = 0 and recalls the definition of 
T,, o(w,; PJ in ten-ns of Ado;  P1). 

3.2. Mathematical proof of (1 8 a) 

In this item, expression (lsa), inferred from a general argument and used to derive 
formula (4), is proved in a strict mathematical sense. In order to do so one takes here, 
as before, an incident wave with frequency w in the earth-fixed system and wavenumber 
K = w2/g,  but considers the body advancing with velocities _+ Ui; the reversed flow 
problem - Ui is used in ship hydrodynamics to derive some reciprocity relations and 
it is also needed in the present context. 

For this reason the sign (+) is reserved, in the following, to define the problem when 
the velocity is + Ui while the sign (-) will be used when the velocity is - Ui; in 
particular, the incident wave directions will be assumed as p*, where the angle /?+ is not 
supposed to be related, in any way, to the angle p. The following parameters are 
introduced accordingly : 

w$ = w 1 f-cosp' , I 
, 

K = K*@'). J 

Let $,',,,@*) denote the incident wave in the directions p*,$$,,@*) the related 
scattered wave and g5&3*) be the total potential, where 

(19b) 

The potentials $:@*) are solutions of (1 I), (12) and (13) if one uses k U in place of 
U, K h  in place of K,, &(p*) in place of qj, ,@), A & ( @ ; p * )  in place of A , ( @ ; p ) ,  K*(8) 

= 4; u@') + $6, v@*), 
$,', ,,@*) = exp (iKr cos (8 - p*)) exp (Kz). 
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in place of K(8) and FZu(P*) in place of 4,&3); the factor -igA/w of the incident 
wave is assumed unitary. 

One considers also the standard problems (no current) at the frequencies w:, 
assuming incident waves in the 'refracted directions ' 

pr = p' +2-sinpk. 

where 

(204 
U 
c 

Notice, for future reference, that 

Again, if q!~: o(p:) and $2, ,(p:) are, respectively, the incident and scattered waves in 
the standard problem, then the total potential #,'(p:) can be written as 

(21 a) 
4iW2) = # ; o m  + $ ; , O ( P : ) ,  

#:,(P:) = exp(iK' rcos(e-p:))exp(K: z) ,  

and satisfy the set of equations 

V2$: = O  in V ;  1 

together with 
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The fluid volume V is bounded by the free surface F by the body B and by a 
cylindrical surface C with radius r +. 00. Suppose the equality Vzq5:(p-') &(/I-) = 
V2q5d;(/3)q5&9+) integrated in V. If Green's identity is used, together with the first 
expression in (22 b), and the parameter 

w: - w, 

is introduced, one gets 

In deriving this equality Green's identity was used also at the free surface together 
with (€9, resulting in the term proportional to -2iUfc; in this parcel, and also in the 
one that defines A ,  (22a) has been used to replace $6 by q5:, since terms of order ( U / C ) ~  
are ignored. 

Considering now the identity V2&cBf) q5;cB;) = Vz$;LB;) &E) and repeating the 
procedure stated above one obtains: 

From both expressions it follows then, in the limit r --f co : 

Notice that the above equality holds either for an oscillating body (qZv(p*) + 0) or 
else for a body fixed in waves (&(p*) = 0). In the surface C one can use the far-field 
conditions for the scattered waves and so 

I = -iK:[1 - c o s ( 8 - ~ ~ ) 1 ~ ~ ~ ( p : ) + i K k  4 : ~ : ) .  
ar 

Placing these expressions into (23a) and observing that 

- i(K: - K 3  q5XK) &(p;) dz = 0, 
m 

if terms of order ( U / C ) ~  are ignored, one obtains, after multiplying both sides of (23 a) 
by iinK, 

Z,(Kr) - ZL(Kr) + J(Kr) = I;(Kr) - Z:(Kr), (23 b) 



K 

Observing that dC  = r d0 dz and integrating in z the expression that defines J(Kr) one 
obtains, after using (20b) and the expressions for {q5~v(p*);qh~o(p:)>, given in (19b) 
and (21 a), the result 

J(Kr) = $nKr 1 + K,f  - K ,  ( 2 K )  

x [cos (0 -,P) - cos (0-p)] exp (iKr[cos (0-/3+) + cos (0--B)]) do. 

The phase cos(0- -p ' )+cos(0-~)  is stationary whensin(O-pt)+sin(O-p-) = 0; 
assuming p =k pf + n  this condition implies in cos (6 -p t )  = cos (0-g) and so 
J(Kr) --f 0 when Kr -+ co. Notice that the next term in the asymptotic expansion comes 
from the end values of the integral and it is also zero owing to the periodicity of the 
integrand ; so J(Kr) = Of 1 /Kr1I2) as Kr + 00. The case /3- = ,P + n will be addressed at 
the end of this item. It follows then that 

Z&(Kr)-Z:(Kr) = &,(Kr)-I;(Kr); Kr+ co. ( 2 4 4  
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In (24b) the phase rp,(8) is stationary when 

&(d) = -sin(0-PT)+2(U/c)sin8 = 0 

or { B  = plT; 8 = p: +x}. In the first case the integrand is zero while in the second it is 
equal to 2[ 1 k U/c(cos plT +cos p*)] ; placing this result in the known expression 
obtained from the method of the stationary phase one gets, in the limit Kr -+ co : 

x A ; @ f  +n;P+)exp(T 2i(U/c)Kr[cos,@+cosp-]). (25a) 

From (24c), ph(d) = -(K,T/K)sin(e-,@) and so rp,b(O) = 0 when {8 = pf ;  
0 = p: +n}; again the integrand is zero in the first case and it is equal to 2 in the second 
one. The final result is 

(25 b) 
Placing (25a, b) into (24a) the following identity is obtained: 

x exp ( - 2i( U/c)  Kr[cos pt + cos PI) 

1 = (g [ (1 -7 (cosp: + cos p) A;@ + 7c ; p) - A,@ + 7c; p;) 
U 

x exp ( + 2i( V / c )  Kr[cos /3+ + c0sp-l). (25 c) 

The above equality holds for every r, preserving the condition r --f 0 0 ;  since 
p + /?+ + 7c then [cos p + cos p] =k 0 and the phase f ia = L 2i(U/c) Kr[cos p + cos 
p] is arbitrary as Kr --f co. It follows that the expressions within brackets on both sides 
of (25c) must be zero. Returning to the notation of the last item @ = pt) and recalling 
that is not related with p = pt, one may write 8 instead of P; + x in the expression 
on the left-hand side of (25c). Relation (18a) is then obtained if terms of order ( U / C ) ~  
are ignored again. 

The special case /3- = /3++7c corresponds to 8 = p1 and in this circumstance 
the desired expression can be obtained either by invoking the continuity of {A,(8;/3); 
Ao(d;/3,)} in 8 or else with the help of the energy relation (14). 

4. Wave drift damping matrix 

disregarded and (3) is used: 
Expression (4) can be rewritten in the form below when terms of order ( U / C ) ~  are 

Du(w;/3) = Do(w;/3)- 

The parcel within brackets in (26) is just the 'wave drift damping' and the i 
component of this expression has been heuristically obtained by Clark, Malenica & 
Molin (1992). 
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So far only the case with a forward speed U in the x-direction was considered; one 
will now consider the reference system fixed in the body and suppose a forward speed 
U = U, i+ U,j with components U, and U, in the x- and y-direction, respectively. 

For notational convenience the following vectors are introduced : 

where b ,  is related to the action of the current in the wave direction while b, is 
associated with the wave refraction. 

If / is the (3 x 3) identity matrix one can define the (3 x 2) matrix B(w;p) by the 
expression 

and write the exciting steady force in the matrix form 

The matrix B(w;p) may be called the ‘wave drift damping matrix’ but it should be 
observed that it does not contain all information needed for the analysis of the motion 
in the horizontal plane; it lacks a third column related to the slow angular velocity 
around the vertical axis. This point has been not subjected to analysis in the present 
work. The matrix (27c) also does not include the effect of the Munk’s moment N 
introduced by Grue & Palm (1993). 

All results derived here are valid for infinite water depth. The extension for finite 
water depth can be obtained following the same arguments as presented in this work 
but using the proper expression for Du(w; p) instead of (15) and the pertinent relation 
between the phase and group velocities. 

5. Numerical results 
In this section one intends to compare the obtained expression for the ‘wave 

damping, either in the form (4) or else in the form (26), with numerical results known 
in the literature and to comment on observed discrepancies between them. 

Clark et al. (1992) compared the i component of (26) with numerical results obtained 
from the solution of (11) for a circular cylinder (or an array) orthogonal to the free 
surface. The agreement was exact within six significant figures but these authors 
reported, also, a ‘less good’ agreement when the body is free to oscillate; this latter 
observation is not supported by the theory presented here, once formula (4) is correct 
whether or not the body is free to oscillate, and it is further commented on at the end 
of this section. Figure 1, for instance, compares directly expression (4), when /3 = 0, 
with numerical results obtained by Faltinsen (1994) for a hemisphere free to oscillate 
in heave and surge; the maximum value of the drift force corresponds to heave 
resonance and the information about the body oscillation is carried with the force for 
the standard problem U = 0. 

Just to check that the agreement is not restricted to special geometries, expression 
(26), again in the i direction, has been confronted with numerical results obtained by 
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FIGURE 2.  Comparison between (26) and numerical results obtained by Nossen et al. (1991) for a 
semi-submersible with ring-like pontoon and four columns. 

Nossen et al. (1991) for a semi-submersible platform with a ring like pontoon and four 
columns, free to osciilate in surge. The comparison is shown in figure 2 and the 
agreement is again good, the observed discrepancy in high frequency probably being 
due to unavoidable discretization errors in this range. 

In one class of problems, specifically, for a circular cylinder (or an array) 
perpendicular to the free surface and free to oscillate, a consistent discrepancy between 
numerical results and (26) has been observed as shown, for instance, in figure 3 .  

In this example the water depth is equal to the radius of the cylinder (shallow water) 
and the cylinder is free to respond to waves in surge and sway. The problem has been 
analysed by means of two different numerical methods. One, said to be ‘semi- 
analytical’, is an extension of the method proposed by Emmerhoff & Sclavounos 
(1992) for the fixed cylinder, and it has been used by Malenica, Clark & Molin (1995); 
the other is a pure numerical method worked by Grue. Both numerical results agree 
between themselves but do not agree with the extension of (26) for shallow water, this 
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FIGURE 3. Comparison between numerical results obtained by Malenica et al. (1995) and by Grue 
with the extension of (26) for shallow water (labelled as (90) in the figure). -, semi-analytical; ---, 
formula (90); . . ., numerical, Grue. 

extension being labelled as (90) in the figure. Although obtained by a heuristic 
approach, expression (90) in Malenica et al. (1995) is probably correct since it agrees 
to four decimals places with numerical results obtained for the fixed cylinder. 

The consistent disagreement observed here between both numerical results and the 
analytical formula must be contrasted with several examples, for different geometries 
and modes of motions, quoted before; this is a curious point that must be looked at 
with attention. 

However, besides the fact that the theoretical results derived in this work are exact 
and so all numerical results must conform to them, one point should be noted here: 
numerical results obtained for second-order wave forces are known to be not yet 
outstanding. Specifically, for a truncated cylinder a huge difference between steady 
forces in harmonic waves, computed either from direct pressure integration or else by 
momentum theory, has been obtained, as discussed in Faltinsen (1994). This latter 
result, together with the former one for the 'wave drift damping', seems to indicate that 
these geometries have, when free to oscillate, a sort of numerical ill-behaviour not yet 
circumvented by the existing numerical methods. 
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PETROBRAS; a research grant from CNPq and FAPESP must also be acknowledged. 
The author is specially indebted to Professor Paul Sclavounos for his careful reading, 
useful suggestions and public support of this work. 

Appendix 
This Appendix aims to compare expressions (15) for the steady forces and 

moment with similar expressions derived by Grue & Palm (1993). These authors 
used the symbol v instead of K, and the far field coefficient H(8) in place of the factor 
(2/7~K,)'/~ Au(O; p) e-'"/4; see expressions (36) and (39) of their work. 
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Observing that K J K  = 1 -2U/ccosp and using the present notation in the Grue & 
Palm result, one can check that the expression for the yaw moment coincides with (1 5 c) 
when the Munk's parcel is ignored; the related expressions for the forces are given 
below : 

' (A1) 
-2cosp(l -2(U/c)cos/3)ReAu(P,;/3), 

C 

- 2 sin p( 1 - 2( U/c) cosp) Re Au(P,; p). 1 
It is not difficult to show now that (A 1) coincides with the expressions (15) of the 

present work. In fact, if the term 2U/ccos2 8 is added and subtracted within the brackets 
of the polar integral for Dz, and the energy identity is used, one obtains, when terms 
of order ( U / C ) ~  are ignored, the same polar integral as in (1 5 a) plus a term of the form 

U x1 = -2cosp ReAu(P,;/3)+4-ReAu(P,;,8). 
C 

One can now write 

and so the above expression for Dz,u coincides with (15a) since the term within 
brackets is just cos PI. 

The polar integral for Dg, is the same in (A 1) and (15b); the coefficient 

can be written as 

1 2ReAu(,8,;/3), 

where the term within brackets is sinp,. 

(U/C)~, with the expressions obtained by Grue & Palm (1993). 
It turns out then that expressions (15) coincide, within the accepted error of order 
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